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ABSTRACT

While correlations between stocks play a central role in Markowitz’s portfolio selec-

tion and diversification, empirical evidence shows that investors often neglect them,

relying instead on simple heuristics rather than the Pearson correlation coefficient.

Although standard theory suggests that incorporating correlations should improve

portfolio performance, empirical studies reveal that ignoring correlations can some-

times yield better out-of-sample results. This raises two key questions: Is correla-

tion neglect always harmful? And which aspects of correlation are truly essential

for portfolio construction? In this paper, I propose a transformation that isolates

the directional component of correlations and demonstrate that both fully ignoring

correlations and fully relying on them are suboptimal. Empirically, I show that

the directional component captures the most relevant information for diversifica-

tion and plays a critical role in improving portfolio performance. By distinguishing

between beneficial and irrelevant aspects of correlations, this paper provides a new

framework for constructing more robust and effective investment portfolios.
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I. Introduction

Modern portfolio theory, pioneered by Markowitz (1952), is a cornerstone of financial

economics. Central to its implementation is the covariance matrix of asset returns, which

dictates the benefits of diversification. The correlation structure, in particular, is critical

for constructing optimal portfolios. Accurately estimating and utilizing the correlation

matrix is therefore considered a fundamental challenge for investors and asset managers.

Given its theoretical importance, a prominent literature in finance investigates “corre-

lation neglect,” a cognitive bias where investors tend to ignore or underweight correlation

information when making portfolio decisions (Eyster and Weizsacker, 2010; Kallir and

Sonsino, 2009; Enke and Zimmermann, 2019; Ungeheuer and Weber, 2021). This re-

search stream views the failure to account for correlation as a heuristic error and seeks to

“debias” investors, for instance by improving the experiential presentation of correlation

data to encourage its use (Laudenbach et al., 2023). The implicit prescription from this

literature is clear: investors should pay more attention to correlation.

In stark contrast, a vast literature in finance raises serious doubts about the practical

utility of sample correlation matrices. It is well-documented that the sample covariance

matrix, Σ̂, suffers from severe estimation errors, leading to poor portfolio optimization

performance based on these estimates (DeMiguel et al., 2009). In fact, many optimal port-

folios constructed using sample covariance matrices can be easily outperformed by simple

heuristic strategies. For example, the equal-weighted (1/N) portfolio, which implicitly

ignores correlations, has been shown to consistently outperform optimized portfolios that

rely on noisy sample estimates. Moreover, Kirby and Ostdiek (2012) demonstrate that

the primary source of this instability arises not from the estimation of individual asset

volatilities but rather from the noisy pairwise correlation estimates. When focusing solely

on volatility information, it is possible to construct portfolios that outperform the equal-

weighted benchmark while avoiding extreme portfolio weights. From this perspective, it

may even be rational for investors to disregard sample correlations altogether.
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This tension gives rise to a fundamental paradox. On the one hand, a large body

of literature urges investors to incorporate correlation information that they are often

prone to neglect. On the other hand, empirical evidence suggests that relying on sample

correlations can be counterproductive. How can these two perspectives be reconciled?

If the full correlation matrix is too noisy to be reliable, yet ignoring it entirely discards

valuable information, an important question arises: which components of correlation

provide stable diversification benefits, and which are dominated by estimation noise?

In this paper, we bridge this gap by proposing a simple yet powerful decomposition

of the correlation coefficient into two distinct components: its magnitude (the strength

of comovement) and its direction (the sign, indicating positive or negative comovement).

We empirically demonstrate that the direction of correlation is remarkably stable and

robust, even when using short time series or dealing with a large cross-section of assets.

In contrast, the magnitude of correlation is highly unstable and constitutes the primary

source of estimation error that undermines portfolio optimization, especially in low signal-

to-noise ratio environments. By isolating the stable directional information, we are able to

construct portfolios that retain the diversification benefits of correlations while discarding

the noisy components.

To further explain these findings, we adopt both simulation-based and theoretical

perspectives. We show that correlation neglect naturally arises in environments where

relevant information must be estimated from noisy samples and where uncertainty about

the future violates the assumptions of classical rational decision theory. Under such

conditions, using the full correlation matrix often requires extremely large samples to

achieve reliable asymptotic results. Counterintuitively, ignoring part of the correlation

structure can sometimes improve out-of-sample performance, a phenomenon known as

the less-is-more effect: there exists an inverse-U-shaped relationship between the amount

of information used and the resulting accuracy of portfolio decisions.

Neglecting correlations introduces some specification error, but it can substantially
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reduce the variance caused by sampling noise, thereby improving robustness. Our anal-

ysis provides guidance on how investors can selectively exploit correlation information

without overfitting to unreliable estimates. In particular, we show that focusing on the

directional component offers a tractable and effective solution: it captures the essential in-

formation needed for diversification, requires minimal additional computation, and can be

seamlessly incorporated into investment applications. For instance, a simple “counting-

based” approach, tracking the frequency of co-movement in stock returns, can be used

to help investors make better portfolio decisions without relying on unstable correlation

magnitudes.

We also analyze the statistical properties of our newly proposed correlation matrix

through a spectral analysis of its eigenvalues. Our results show that the eigenvalues of

the new matrix are more closely centered around their true values. This finding provides

insight into how correlation neglect influences portfolio decisions: by effectively cleaning

the extreme eigenvalues of the correlation matrix, the invertibility of the matrix becomes

more stable, which in turn leads to less extreme portfolio weights and improves the

robustness of diversification.

Our research contributes to the literature in three key ways. First, we introduce a

new method for portfolio construction that relies solely on the directional component of

the correlation matrix. We show that this approach can be interpreted as a theoretically

grounded and intuitive form of elementwise shrinkage on the sample correlation matrix.

Our empirical analysis demonstrates that this method delivers superior out-of-sample

performance compared to the 1/N rule, full correlation neglect, and well-known shrinkage

estimators such as Ledoit and Wolf (2004).

Second, we contribute to the literature on FinTech and financial education by provid-

ing a practical framework that helps investors incorporate robust correlation information

into their investment decisions. Rather than simply encouraging reliance on the sample

correlation estimator, our findings suggest that investors should be guided to focus on the

4



stable, directional nature of asset relationships. This helps explain why investors might

intuitively distrust complex correlation measures and instead rely on simpler heuristics,

while also providing a practical pathway to improve their decision-making.

Finally, we provide a clearer understanding of why and how shrinkage estimators

work. By decomposing the correlation matrix into its magnitude and directional compo-

nents, we identify that the magnitude benefits most from shrinkage, while the direction

contains valuable information that should be preserved. This leads to a more targeted

and effective approach to managing estimation error in portfolio choice. Our simulation

and empirical results further reveal an important mechanism: overestimated correlations

are the primary drivers of extreme negative weights and unstable portfolio allocations,

which in turn hurt out-of-sample performance. Interestingly, correlation neglect benefits

from intentionally sacrificing some model accuracy, as it is more robust to unpredictable

future events and estimation errors.

Our study contributes to several strands of the literature. Since our work interprets

correlation neglect as an elementwise shrinkage function for correlation matrix estima-

tion, it naturally relates to the literature on shrinkage estimators. Ledoit and Wolf (2020)

provide a comprehensive review of this literature over the past two decades, highlight-

ing how shrinkage methods improve the statistical properties of estimators and enhance

portfolio optimization. Our approach is also connected to the use of thresholding opera-

tors as regularization penalties (Rothman et al., 2009; Bickel and Levina, 2008; Karoui,

2008). Unlike shrinkage methods that primarily target eigenvalues, thresholding directly

regularizes individual elements of the covariance matrix. A key advantage of thresholding

is that it imposes essentially no computational burden, making it attractive for problems

in very high dimensions and real-time applications. We show that our directional com-

ponent shares similar properties, underscoring its relevance in high-dimensional portfolio

problems.

Our paper is also closely connected to the literature on Kendall’s tau correlation
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matrices, as we exploit the relationship between Kendall’s tau and Pearson correlation

to isolate the directional component of correlation. Prior studies (Edirisinghe and Zhou,

2014; Espana et al., 2024) demonstrate that Kendall’s tau improves portfolio optimization

by enhancing the estimation of both eigenvalues and eigenvectors in data-poor regimes,

thereby yielding better covariance matrix estimators. Related research on the empirical

spectral distribution of Kendall rank correlation matrices (Bandeira et al., 2017; Bao,

2019) further supports our approach and helps explain why focusing solely on the direc-

tional component of Pearson correlation leads to favorable statistical properties.

Furthermore, our work connects to Gerber et al. (2022), who propose the Gerber

statistic as a robust co-movement measure for covariance matrix estimation in portfolio

construction. Their approach recognizes that very large or extremely small movements

can distort correlation estimates and therefore relies on a more robust co-movement

measure in a mean variance setting. In our paper, we formally establish the connec-

tion between rank-based correlation and traditional Pearson correlation, analyzing which

component drives the improvement in estimation accuracy and portfolio performance.

Finally, our study relates to the empirical findings of Ungeheuer and Weber (2021),

who show experimentally that investors understand dependence, but not necessarily in

terms of Pearson correlation. Participants behave as if they apply a simple counting

heuristic based on the frequency of comovement. In our framework, we formally define

this heuristic using Kendall’s tau and connect it to Pearson correlation. This connection

provides an intuitive explanation of why correlation neglect can act as a robust method for

addressing real-world diversification tasks, especially under high estimation uncertainty.

The remainder of the paper is organized as follows. Section II reviews the correlation

neglect models considered in this study. Section III presents the data and reports the

empirical results. Section IV describes the simulation studies. Section V concludes.
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II. Description of the Correlation Neglect Models

Considered

In this section, we discuss various models that capture how investors deal with corre-

lation coefficients and provide a brief introduction to each. Our focus is on the diversifi-

cation effects that arise from different ways of measuring correlations between stocks. We

use Rt to denote the N -vector of returns on the N risky assets available for investment

at date t. Let Σt denote the corresponding N ×N variance–covariance matrix of returns,

with its sample estimate given by Σ̂t.

To facilitate comparison across different strategies, we consider an investor who

chooses the portfolio of risky assets that minimizes the variance of returns:

min
wt

w⊤
t Σtwt s.t. w⊤

t 1 = 1, (1)

where wt denotes the vector of portfolio weights at time t. The optimal portfolio weights

are then given by:

wt =
Σ−1

t 1

1⊤Σ−1
t 1

. (2)

Since the covariance matrix can be decomposed into volatility and correlation com-

ponents, we have:

Σt =



σx1,t 0

σx2,t

. . .

0 σxn,t





1 ρx1,x2,t · · · ρx1,xn,t

ρx2,x1,t 1 · · · ρx2,xn,t

...
...

. . .
...

ρxn,x1,t ρxn,x2,t · · · 1





σx1,t 0

σx2,t

. . .

0 σxn,t


.

(3)

Our analysis mainly focuses on how different treatments of the correlation component

influence asset allocation and the resulting degree of diversification.

In what follows, we first present out-of-sample results that illustrate how correlation
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neglect affects portfolio decisions and then provide detailed summary statistics on the

distribution of portfolio weights across stocks. We show that the rank (directional) in-

formation contained in the correlation matrix is relatively stable, whereas the magnitude

component is highly sensitive and often causes risk reduction to fail out-of-sample.

To quantify this effect, we proceed in several steps. First, we analyze what happens

when we completely ignore correlation information and examine how this affects portfolio

weights compared to an equal-weight portfolio. Next, we consider the case where only

the directional (rank-based) information is incorporated and investigate its impact on

portfolio weight adjustments. For this part, we propose a parametric approach to isolate

directional information from correlations by exploiting the connection between Kendall’s

τ and Pearson correlation. This method is computationally efficient and avoids the long

calculation times required by the standard nonparametric Kendall’s τ estimator.

Finally, we compare our results with well-known shrinkage estimators to show how

portfolio weights are adjusted under different regularization methods. Importantly, our

goal is not to propose an optimal shrinkage estimator that minimizes estimation error.

Instead, we aim to provide a method that achieves risk reduction comparable to an

equal-weight portfolio while offering a more interpretable and practical framework. This

allows us to offer clearer guidance on which aspects of correlation are most relevant when

constructing portfolios designed to manage risk.

A. Naive Portfolio

The naive equal-weight (”EW” or ”1/N”) strategy allocates an equal portfolio weight

of wt = 1/N to each of the N risky assets. This approach requires neither estimation nor

optimization and disregards all information about return correlations and volatilities.

For comparison with the optimized weights in Equation (2), the 1/N strategy can be

interpreted as implicitly assuming knowledge of the covariance matrix Σt but imposing

the restriction that all assets exhibit identical volatility, i.e., Σt = σ2
t I. Under this
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Table I. List of various correlation neglect models considered

# Model Abbreviation

Naive
1. 1/N portfolio with rebalancing (benchmark strategy) EW or 1/N

Full Correlation Neglect
2. Volatility timing (Kirby and Ostdiek, 2012) VT

Partial Correlation Neglect
3. Directional correlation via Kendall’s τ (parametric): τ = 2

π
arcsin(ρ) K’s τ 2

Naive & Partial Correlation Neglect
4. Linear shrinkage estimator (Ledoit and Wolf, 2004) LW

No Correlation Neglect
5. Sample Pearson Correlation SampleC

formulation, the investor effectively ignores both the correlation structure and cross-

sectional variation in volatility. DeMiguel et al. (2009) demonstrate that this simple rule

can outperform a range of optimized portfolio strategies, particularly in the presence of

estimation error.

B. Full Correlation Neglect

Kirby and Ostdiek (2012) identify the correlation estimator as a primary driver of

high turnover and transaction costs in variance-based asset allocation strategies, frictions

that can easily erode the theoretical benefits of portfolio optimization. They propose

a simple yet powerful solution: setting all pairwise correlations between excess risky-

asset returns to zero. This approach results in a diagonal covariance matrix, Σtotal =

diag(σ2
1, σ

2
2, . . . , σ

2
n) , and a strategy they term volatility timing.

The rationale behind this method is to treat the zeroing out of the off-diagonal ele-

ments of the estimated covariance matrix, Σ̂ as an aggressive form of shrinkage. While

this intentionally discards correlation information, it drastically simplifies the estimation

problem by reducing the number of parameters by N(N − 1)/2. The central insight is

that the significant reduction in estimation risk can outweigh the information loss, lead-

ing to more stable portfolio weights and reduced turnover. Consequently, this volatility
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timing strategy can outperform naive diversification, even in the presence of significant

transaction costs.

C. Full Correlation Neglect

Kirby and Ostdiek (2012) identify the correlation estimator as a primary driver of

high turnover and transaction costs in variance-based asset allocation strategies, frictions

that can erode the theoretical benefits of portfolio optimization. They propose a simple

yet powerful solution: setting all pairwise correlations between risky-asset returns to zero.

This approach results in a diagonal covariance matrix,

Σ̂t = diag(σ̂2
1,t, σ̂

2
2,t, . . . , σ̂

2
N,t),

and a strategy termed volatility timing.

The rationale behind this method is to treat the zeroing out of the off-diagonal ele-

ments of Σ̂t as an aggressive form of shrinkage. While this discards correlation informa-

tion, it simplifies estimation by reducing the number of parameters from N(N − 1)/2 to

N . The key insight is that the significant reduction in estimation risk can outweigh the

information loss, leading to more stable portfolio weights and reduced turnover.

D. Partial Correlation Neglect

In this section, we introduce a correlation measure that isolates the directional co-

movement of stocks while deliberately ignoring the magnitude of their movements. We

employ Kendall’s τ , a nonparametric statistic that quantifies the ordinal association be-

tween two variables by comparing their pairwise rankings. Intuitively, Kendall’s Tau

captures how often two assets move in the same direction versus in opposite directions.

This perspective allows us to view the standard Pearson correlation as comprising two

components: a directional component (captured by Kendall’s τ) and a magnitude com-
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ponent (ρ− τ). Our analysis focuses on how the directional component affects portfolio

weights and risk reduction.

For two jointly distributed random variables (X, Y ) with independent copies (X1, Y1)

and (X2, Y2), the population Kendall’s τ is

τ = P
(
(X1 −X2)(Y1 − Y2) > 0

)
− P

(
(X1 −X2)(Y1 − Y2) < 0

)
,

which measures the difference in probabilities that two pairs are concordant versus dis-

cordant.

Given a bivariate sample (X1, Y1), . . . , (Xn, Yn), the sample Kendall’s Tau is

τ̂ =
2

n(n− 1)

∑
i<j

sgn(Xi −Xj) sgn(Yi − Yj),

where

sgn(x) =


+1 if x > 0,

0 if x = 0,

−1 if x < 0.

A pair of observations (Xi, Yi) and (Xj, Yj) is concordant if the assets move in the

same direction (e.g., Xi > Xj and Yi > Yj), and discordant if they move in opposite

directions. The statistic τ̂ ranges in [−1, 1], with τ̂ = 1 indicating perfect concordance,

τ̂ = −1 perfect discordance, and τ̂ = 0 no association.

The Kendall’s Tau correlation matrix T generalizes this to multiple assets, with each

entry Tij representing the τ between the i-th and j-th variables.

Connection to Pearson Correlation

A natural question is how this directional correlation relates to the standard Pearson

correlation. In financial applications, stock returns are often modeled as elliptically dis-

tributed (e.g., Normal or Student’s t). In this setting, the two measures are linked by the
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following proposition:

PROPOSITION 1 (Kendall’s τ and Pearson Correlation): Let X = (X1, X2) follow an

elliptical distribution. Then Kendall’s Tau and Pearson correlation ρ satisfy

τ =
2

π
arcsin(ρ).

This proposition follows directly from Theorem 2 in Lindskog et al. (2003). This

relation implies that focusing solely on the directional component corresponds to a non-

linear shrinkage of Pearson’s correlation toward zero. The transformation is mild for low

correlations but becomes more pronounced as |ρ| increases.

Figure 1 illustrates this effect, showing how extreme correlations are shrunk more

strongly under Kendall’s Tau. Accordingly, we define the estimator

τ̂ij =
2

π
arcsin(ρ̂ij),

which isolates the directional information in the Pearson correlation ρ̂ij while suppress-

ing its magnitude. The subsequent analysis investigates whether this transformation

enhances portfolio diversification.

E. Naive & Partial Correlation Neglect

Ledoit and Wolf (2004) and Ledoit and Wolf (2003) propose a widely used linear

shrinkage estimator of the covariance matrix:

Σ̂LW,t = (1− λ)σ̄2I+ λΣ̂t,

where σ̄2 denotes the cross-sectional average of the sample variances. This estimator

shrinks the sample covariance matrix toward a scaled identity matrix, thereby reducing
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Figure 1. Relationship between Pearson’s ρ and Kendall’s τ

sensitivity to noisy correlation estimates. It can be interpreted as a linear combina-

tion of an equal-weighted portfolio (imposing identical volatilities and zero correlations)

and the sample-based estimator. In this sense, it partially ignores correlation structure

while simultaneously enforcing a homoskedasticity constraint, which improves estimation

stability in high-dimensional settings.

F. No Correlation Neglect

To implement this model, we adopt the classic plug-in approach, whereby the opti-

mization problem in Equation (2) is solved using the sample estimates of the covariance

matrix, denoted by Σ̂. We refer to this strategy as the sample-based minimum variance

portfolio. While this approach is commonly used to capture the correlation structure

among assets, our analysis highlights that the correlation component plays a dominant

role in driving high portfolio turnover. These findings suggest that caution is warranted
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when relying on sample correlations in diversification-based strategies, particularly in the

presence of estimation error and transaction costs.

III. Empirical Results

A. Methodology for Evaluating Performance

Our goal is to study the influence of correlation neglect on real asset allocation per-

formance across different setups, and to demonstrate how our proposed method can be

applied to empirical data to derive insights from observed market behavior. The analysis

focuses on two main objectives: (i) evaluating the performance of the Global Minimum

Variance Portfolio (GMVP) under different types of correlation neglect and (ii) examining

the impact ow correlation neglect affects portfolio weight dynamics.

We use the daily data obtained from the Center for Research in Security Prices

(CRSP), covering the period from 01/01/1995 to 12/29/2023. The empirical analysis

follows a rolling-sample approach. Consistent with common practice, 21 consecutive trad-

ing days are treated as one ”month.” The out-of-sample period spans from 01/14/2000

to 12/29/2023, resulting in a total of 287 “months” (6,027 trading days). Portfolios

are rebalanced monthly, with the number of shares held remaining constant within each

“month,â implying no transaction costs during this period. We denote the investment

dates by t = 1, ..., 287.

For each combination (T,N), the investment universe is defined as the set of N stocks

with complete return histories over both the most recent T trading days and the subse-

quent 21 trading days. These return series are used to estimate the covariance matrix,

which then using as imput for portfolio optimization. At each investment date t, returns

from the previous T days are used to estimate the covariance matrix (Σ̂t) required to

implement a given strategy. The estimated parameters determine the portfolio weights

(ŵt) for month t+1. This rolling window advances monthly, adding 21 new observations
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and discarding the oldest 21. The outcome of this procedure is a time series of 6,027

out-of-sample daily returns generated by each portfolio strategy.

Given the out-of-sample returns, We evaluate portfolio performance using five metrics:

1. Out-of-sample annualized volatility is calculated as:

σ̂annual = σ̂daily ×
√
252, (4)

where the σ̂daily is the daily sample standard deviation. To test whether the volatil-

ity of two strategies is statistically different, we also compute the p-value of the

difference, using the approach suggested by Ledoit and Wolf (2008).

2. The out-of-sample Sharpe ratio of each portfolio is defined as the sample mean of

excess returns, µ̂p, divided by portfolio volatility, σ̂p:

ŜR =
µ̂p

σ̂p

. (5)

To test whether the Sharpe ratios of two strategies are statistically different, we

also compute the p-value of the difference, using the approach suggested by Ledoit

and Wolf (2008).

3. Out-of-sample maximum drawdown (MDD), the largest peak-to-trough decline in

portfolio value, is computed as:

MDD = max
τ∈[0,T ]

[
supt∈[0,τ ] Pt − Pτ

supt∈[0,τ ] Pt

]
(6)

where Pt denotes the portfolio value at time t.

4. The certainty-equivalent (CEQ) return represents the risk-free rate that an investor
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would accept instead of adopting a given portfolio strategy:

ĈEQ = µ̂p −
γ

2
σ̂2
p, (7)

where γ is the coefficient of relative risk aversion. We report results for γ = 4;

robustness checks using alternative values are provided in the appendix. To test

whether the CEQ returns from two strategies are statistically different, we also

compute the p-value of the difference, using the approach suggested by DeMiguel

et al. (2009).

5. Portfolio turnover measures trading activity required to maintain a strategy:

Turnover =
N∑
j=1

|ŵj,t+1 − ŵj,t+| (8)

where:

• ŵk,j,t is the target weight in asset j at time t

• ŵk,j,t+ denotes the pre-rebalancing weight at t+ 1 (before trading)

• ŵk,j,t+1 is the post-rebalancing weight at t+ 1 (after trading)

The average turnover is computed as the mean of turnover across all investment

dates.

B. Empirical Results

Our analysis begins by investigating a challenging but realistic scenario for asset

allocation: a ”short sample” setting where the number of time-series observations is only

slightly larger than the number of assets (T/N = 1.05). This environment is notorious

for producing severe estimation error in the covariance matrix.
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Table II. Performance Comparison of Different Portfolio Strategies

Standard Sharpe Maximum CE Avg.
Method deviation ratio drawdown Turnover

N=100, T=105
K’s τ 2 12.35 0.50 31.49 4.77 1.3655

EW 19.32 0.36 55.45 1.13 0.1036
(0.00) (0.39) (0.11)

VT 16.48 0.43 45.71 3.26 0.1672
(0.00) (0.59) (0.25)

LW 13.53 0.45 39.98 4.07 2.2976
(0.00) (0.44) (0.22)

SampleC 49.24 0.28 81.32 -32.92 29.1090
(0.00) (0.37) (0.00)

N=500, T=525
K’s τ 2 10.24 0.57 29.02 5.33 1.1235

EW 20.20 0.46 56.80 2.78 0.1005
(0.00) (0.57) (0.22)

VT 17.39 0.54 49.74 5.02 0.0897
(0.00) (0.88) (0.45)

LW 11.88 0.42 33.85 3.74 3.3802
(0.00) (0.14) (0.10)

SampleC 36.03 0.17 81.26 -18.08 36.1090
(0.00) (0.10) (0.00)

N=1000, T=1050
K’s τ 2 9.30 0.81 26.99 7.45 0.9819

EW 21.36 0.47 57.19 2.62 0.1036
(0.00) (0.09) (0.09)

VT 18.41 0.57 51.35 5.26 0.0822
(0.00) (0.17) (0.23)

LW 10.84 0.64 28.04 6.23 3.4244
(0.00) (0.12) (0.14)

SampleC 29.85 0.34 65.68 -6.00 33.6012
(0.00) (0.05) (0.01)

The portfolio constructed using the raw Sample Covariance Matrix (SampleC) per-

forms disastrously. It exhibits extremely high volatility, large drawdowns, and deeply

negative certainty-equivalent (CE) returns, implying that a risk-averse investor would

pay to avoid this strategy. Moreover, its extremely high turnover indicates unstable and
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erratic weight reallocations from month to month. This confirms that directly inverting

the sample covariance matrix in high-dimensional settings is essentially a recipe for “error

maximization”: the optimizer aggressively chases noise rather than meaningful signal.

Strategies that neglect correlation information perform far better. The Equally

Weighted (EW) portfolio provides a reasonable baseline, but the Volatility-Targeting

(VT) strategy — which uses only the diagonal elements of the covariance matrix — de-

livers a clear improvement. By simply weighting assets inversely to their variance, the

VT portfolio achieves substantially lower risk and a higher Sharpe ratio.

This demonstrates that even a naive form of “correlation neglect” — ignoring off-

diagonal elements entirely — can be much more effective than relying on noisy correlation

estimates. From statistical tests, we find that partially incorporating correlation infor-

mation significantly improves portfolio risk control. For lower-dimensional settings, the

improvement in the Sharpe ratio is modest and often not statistically significant, mainly

because lower risk sometimes comes at the cost of reduced returns. However, as the stock

universe expands, the benefit of correlation information becomes more pronounced, and

the improvement in the Sharpe ratio becomes statistically significant.

The most sophisticated methods deliver the strongest results. Both the Ledoit-Wolf

(LW) shrinkage estimator and our proposed rank-based Kendall’s τ (K’s τ) strategies

significantly outperform simpler heuristics:

• LW achieves lower volatility than EW and VT but suffers from very high turnover,

indicating frequent and costly portfolio adjustments.

• Our K’s τ 2 strategy, which isolates the most robust directional component of corre-

lation, consistently delivers one of the highest Sharpe ratios and CE returns while

maintaining a much lower turnover than LW.

Statistical tests confirm that K’s τ 2 portfolios extract stable and valuable information

from the correlation structure. Among all methods, the closest competitor is VT, which
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often shows larger p-values in tests of Sharpe ratio differences. This suggests that volatil-

ity alone carries strong predictive information for portfolio construction, and ignoring

correlations entirely still leads to relatively good outcomes. However, volatility-based

approaches sacrifice some diversification potential.

The strength of K’s τ 2 lies in regularizing the correlation matrix, taming noise while

preserving useful signals. By focusing on directional dependence, it balances signal extrac-

tion with portfolio stability. While correlation-based methods generally produce higher

turnover than the 1/N strategy, they significantly improve risk-adjusted performance.

Next, we explore whether simply increasing the length of the estimation window can

overcome estimation challenges. For a fixed portfolio size of N = 500, we expand the

sample from T = 525 to T = 1250.

The findings in Table III reveal a nuanced picture:

• As T increases, the performance of the SampleC strategy improves dramatically.

By T = 1250, its volatility and Sharpe ratio become respectable.

• However, consistent with the findings of DeMiguel et al. (2009), SampleC still fails to

outperform simpler, more robust strategies. Achieving reliable results with SampleC

requires unrealistically long time series.

The key insight from Table III is the remarkable stability of robust strategies. The

performance of VT and especially K’s τ 2 remains exceptionally consistent across different

time-series lengths. While longer samples slightly reduce turnover for K’s τ 2, the overall

risk-return profile remains stable.

Interestingly, VT and K’s τ 2 deliver statistically similar Sharpe ratios and CE re-

turns, but K’s τ 2 achieves lower volatility. This result arises because volatility alone pro-

vides strong signals about the risk-return trade-off, but correlation information further

enhances volatility control. VT portfolios exhibit slightly higher volatility but achieve

comparable returns, while K’s τ 2 extracts additional diversification benefits.
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Table III. Performance Comparison of Different Portfolio Strategies

Standard Sharpe Maximum CE Avg.
Method deviation ratio drawdown Turnover

N=500, T=525
K’s τ 2 10.24 0.57 29.02 5.33 1.1235

EW 20.20 0.46 56.80 2.78 0.1005
(0.00) (0.57) (0.22)

VT 17.39 0.54 49.74 5.02 0.0897
(0.00) (0.88) (0.45)

LW 11.88 0.42 33.85 3.74 3.3802
(0.00) (0.14) (0.10)

SampleC 36.03 0.17 81.26 -18.08 36.1090
(0.00) (0.10) (0.00)

N=500, T=600
K’s τ 2 10.26 0.62 28.54 5.90 1.0463

EW 20.20 0.46 56.80 2.78 0.1005
(0.00) (0.40) (0.18)

VT 17.42 0.55 49.82 5.06 0.0886
(0.00) (0.64) (0.38)

LW 11.72 0.50 31.29 4.78 3.2095
(0.00) (0.26) (0.18)

SampleC 19.58 0.23 62.67 -1.63 12.3525
(0.00) (0.05) (0.01)

N=500, T=1250
K’s τ 2 10.54 0.67 29.46 6.47 0.7117

EW 20.20 0.46 56.80 2.78 0.1005
(0.00) (0.26) (0.13)

VT 17.60 0.55 50.72 5.02 0.0846
(0.00) (0.43) (0.29)

LW 11.11 0.50 29.02 4.71 1.8859
(0.00) (0.04) (0.03)

SampleC 11.70 0.44 30.83 4.01 2.5060
(0.00) (0.03) (0.02)

Even though SampleC improves with longer data windows, it still tends to overesti-

mate correlations and overweight certain stocks, which ultimately hurts returns. Coun-

terintuitively, ignoring noisy correlation information often produces better portfolios than

using SampleC directly.
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This analysis highlights a crucial point:

• When sample sizes are small, naive inversion of the sample covariance matrix leads

to unstable and poor-performing portfolios.

• Simple correlation-neglect strategies, such as VT, already deliver significant bene-

fits.

• Among advanced methods, K’s τ 2 stands out by isolating a stable directional signal,

yielding strong performance with lower turnover and greater robustness.

For investors who are uncertain whether they have “enough” data, focusing on direc-

tional correlation provides a reliable and effective approach to portfolio construction.

C. The Effect of Correlation Neglect on Portfolio Weight

In this section, we conduct a detailed analysis of the summary statistics for the portfo-

lio weights generated by various allocation strategies. Building on the preceding finding

that neglecting the correlation component can mitigate estimation error and improve

out-of-sample performance, we now seek to understand the mechanism through which

this improvement is achieved. Specifically, we investigate how different treatments of the

covariance matrix influence the resulting portfolio weights. The central hypothesis is that

estimation errors, particularly in the off-diagonal elements (correlations) of the sample co-

variance matrix, induce extreme long and short positions, which in turn degrade portfolio

performance. To characterize the portfolios, we compute five key summary statistics:

1. Average Minimum Weight: The mean of the lowest weight assigned to any

single asset across all rebalancing periods.

2. Average Maximum Weight: The mean of the highest weight assigned to any

single asset across all rebalancing periods.
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3. Average Percentage of Positive Weights: The average proportion of assets

held in long positions.

4. Herfindahl Index: A measure of weight concentration, calculated as the sum of

squared portfolio weights, H =
∑N

i=1w
2
i . A higher index indicates a more concen-

trated portfolio.

5. Average Short Position Size: The absolute sum of all negative weights, repre-

senting the total magnitude of short-selling.

These statistics are averaged across the 287 monthly rebalancing dates in our out-of-

sample period. They collectively provide a comprehensive picture of the portfolio’s spar-

sity, diversification, and reliance on leverage through short-selling.

Table IV. Summary Statistics of Weights of Different Portfolio Strategies

Avg Avg Avg.. Avg. Avg. Size
Min Max Pos. w Conc. of Short

N=100, T=105
K’s τ 2 -0.0562 0.1703 57.88 0.1339 0.6941

EW 0.0100 0.0100 100.00 0.0100 0.0000
VT 0.0016 0.0327 100.00 0.0136 0.0000
LW -0.0970 0.1413 59.31 0.2085 1.2100
SampleC -1.1021 1.1661 51.41 12.2742 10.2765

N=500, T=525
K’s τ 2 -0.0283 0.0729 52.64 0.0662 1.4705

EW 0.0020 0.0020 100.00 0.0020 0.0000
VT 0.0002 0.0073 100.00 0.0027 0.0000
LW -0.0567 0.0748 53.37 0.1923 3.2240
SampleC -0.4595 0.4724 50.79 4.5141 15.9578

N=1000, T=1050
K’s τ 2 -0.0193 0.0559 51.24 0.0462 1.7550

EW 0.0010 0.0010 100.00 0.0010 0.0000
VT 0.0001 0.0042 100.00 0.0014 0.0000
LW -0.0378 0.0557 52.58 0.1367 3.8644
SampleC -0.2571 0.2619 50.65 2.3843 16.4928

Table IV reports these results for the short-sample case where the time-series length
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T and the cross-sectional dimension N satisfy T/N = 1.05. This data-limited scenario

is common in practice and magnifies the impact of estimation error. The results, pre-

sented in Table IV, are striking. The findings in Table IV reveal stark differences in the

characteristics of the portfolios constructed using varying levels of correlation neglect.

The portfolio based on the Sample Covariance Matrix (SampleC), which directly

inverts the sample covariance matrix, exhibits severe instability. The average minimum

and maximum weights are extreme, often exceeding 100% in magnitude. This indicates

that the portfolio takes massive, highly leveraged positions in a few assets. This is

confirmed by the astronomical Herfindahl Index (12.27), signifying extreme concentration,

and a total short position that is over 10 times the portfolio’s net value. Concurrently, the

average short position size is substantial, highlighting an aggressive and risky allocation

strategy driven by spurious correlations in the data. These extreme weights are a classic

symptom of estimation error in an ill-conditioned covariance matrix, where small changes

in input parameters lead to dramatic shifts in the optimal portfolio. This behavior is

a classic symptom of “error maximization,” where the optimizer aggressively exploits

spurious correlations found in noisy data.

In stark contrast, the Volatility-Targeting (VT) strategy, which completely ignores

correlation information and weights assets based solely on their volatility, produces highly

stable weights. The weights are constrained, with a complete absence of short positions.

This approach is analogous to the equally weighted (EW) portfolio in its simplicity and

robustness. By ignoring the noisy correlation structure, the VT strategy avoids the

optimization error that plagues the sample-based approach, leading to the superior out-

of-sample performance documented in Table II.

The strategy based on Kendall’s τ 2, which utilizes only the directional component of

correlation, offers a compelling intermediate solution. This method implicitly restricts

the magnitude of short positions while still permitting significant long positions. The

asymmetric effect on long and short weights is evident from the summary statistics.
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The concentration ratio, as measured by the Herfindahl index, is significantly reduced

compared to the sample covariance strategy. This behavior can be interpreted as a form of

implicit regularization or shrinkage. By focusing on the more robust, rank-based measure

of co-movement, the model filters out much of the estimation noise associated with linear

correlation, thereby preventing the optimization from assigning extreme negative weights.

This shrinkage-like effect is also observed in the portfolio constructed using the Ledoit-

Wolf (LW) shrinkage estimator. The LW method explicitly regularizes the covariance

matrix by shrinking the sample estimates towards a more structured target. This process

effectively dampens extreme weights, reduces short-selling intensity, and increases port-

folio diversification, as evidenced by the lower Herfindahl index. Both the Kendall’s τ 2

and LW approaches demonstrate that moderating the influence of estimated correlations

is critical for achieving well-diversified and robust portfolios.

Furthermore, our analysis shows that as the number of assets in the portfolio in-

creases, the limitations of the sample covariance matrix become more pronounced. Al-

though larger portfolios based on the sample matrix exhibit slightly less extreme maxi-

mum weights, they tend to concentrate leverage into a single substantial short position.

This indicates that as portfolio dimensionality grows, the risk of estimation errors leading

to dangerously concentrated short positions also increases.

This analysis reveals a key channel through which estimation error harms portfolio

performance: the overestimation of correlation coefficients in finite samples induces ex-

treme negative weights, leading to poorly diversified and unstable portfolios. Strategies

that neglect correlation (like VT) or employ robust estimators that implicitly or explicitly

shrink the correlation structure (like Kendall’s τ 2 and Ledoit-Wolf) effectively mitigate

this problem. This finding is consistent with the work of Jagannathan and Ma (2003),

who demonstrate that imposing no-short-sale constraints can be an effective remedy for

estimation error in practice. Our results suggest that correlation neglect acts similarly to

such a constraint, primarily by preventing the large, erroneous short positions that arise
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from noisy correlation estimates. Ultimately, we find that the directional component of

correlation is a more stable and reliable input for portfolio decisions, especially when data

is limited. By focusing on this robust feature, investors can construct better-diversified

portfolios and enhance out-of-sample performance.

Table V. Summary Statistics of Weights of Different Portfolio Strategies

Avg. Avg. Avg. Avg. Avg. Size
Min Max Pos. w Conc. of Short

N=500, T=525
K’s τ 2 -0.0283 0.0729 52.64 0.0662 1.4705

EW 0.0020 0.0020 100.00 0.0020 0.0000
VT 0.0002 0.0073 100.00 0.0027 0.0000
LW -0.0567 0.0748 53.37 0.1923 3.2240
SampleC -0.4595 0.4724 50.79 4.5141 15.9578

N=500, T=600
K’s τ 2 -0.0287 0.0738 52.74 0.0659 1.4610

EW 0.0020 0.0020 100.00 0.0020 0.0000
VT 0.0002 0.0072 100.00 0.0027 0.0000
LW -0.0586 0.0792 53.33 0.1978 3.2592
SampleC -0.2398 0.2528 51.21 1.1949 8.0010

N=500, T=1250
K’s τ 2 -0.0304 0.0739 53.20 0.0621 1.3651

EW 0.0020 0.0020 100.00 0.0020 0.0000
VT 0.0002 0.0068 100.00 0.0027 0.0000
LW -0.0699 0.0923 53.19 0.1761 2.8480
SampleC -0.1946 0.2043 52.57 0.3576 3.5903

We next investigate whether simply having more data can solve the problem. In Table

V, we fix the number of assets at N=500 and increase the time-series length from T=525

(T/N = 1) to T=1250 (T/N = 2.5).

As expected, increasing the amount of data helps the SampleC strategy. The average

extreme weights decrease, and the concentration index drops from 4.51 to a more moder-

ate 0.36. However, even with 2.5 times more data points than assets, the portfolio remains

significantly more concentrated and leveraged compared to those constructed using alter-

native correlation neglect methods. This highlights that simply relying on “brute-force”
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longer samples is often insufficient to resolve the underlying estimation issues.

The most important result from this table is the remarkable stability of the K’s τ 2

strategies. Across all data lengths (T = 525, 600, 1250), the summary statistics for the

K’s τ 2 portfolios remain almost unchanged. This provides strong evidence supporting our

central thesis: the directional component of correlation is a stable signal that is largely

insensitive to the noise induced by limited data. By isolating this signal, we develop a

portfolio construction method that remains robust in both high-dimensional and short-

sample environments.

Our analysis of portfolio weights reveals the precise channel through which estimation

error harms performance: noisy, overestimated sample correlations lead to extreme and

heavily leveraged negative weights. This finding is consistent with Jagannathan and Ma

(2003), who show that no-short-sale constraints can improve performance by mitigating

the impact of estimation error.

Strategies that neglect correlation act as a blunt but effective tool, similar to a no-

short-sale constraint. However, our proposed method, based on Kendall’s τ , offers a

more nuanced solution. By retaining the stable directional information in correlations

while discarding the noisy magnitude component, it effectively regularizes the portfolio,

preventing extreme weights and enhancing diversification. This approach provides a

robust and reliable method for portfolio construction, especially when data is limited.

IV. Simulation Studies

The results in Section III demonstrate that correlation neglect influences diversifica-

tion in real data. To further investigate this mechanism, we employ simulated data to

analyze how the performance of the strategies considered in our empirical analysis varies

with the number of assets (N) and the length of the estimation window (T ). The main

advantage of using simulated data is that their economic and statistical properties are

fully specified. Specifically, we generate returns from a simple single-factor model, assum-
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ing that they are independently and identically distributed over time and follow a normal

distribution. Since the normal distribution is elliptical, this framework provides a clearer

understanding of how correlation neglect affects portfolio diversification. Moreover, it

ensures that the results are not confounded by empirical irregularities, such as small-firm

effects, calendar effects, momentum, mean reversion, or the fat tails typically observed in

real financial data.

Our approach for simulating returns, as well as our choice of parameter values, follows

(Craig MacKinlay and Pástor, 2000; DeMiguel et al., 2009). We assume that the market

consists of a risk-free asset and N risky assets, which are driven by K underlying factors.

The excess returns of the remaining N −K risky assets are generated according to the

factor model:Ra,t = α+BRb,t+ϵt, where Ra,t is the vector of excess asset returns, α is the

vector of mispricing coefficients, B is the factor loadings matrix, Rb,t is the vector of excess

returns on the factor portfolios, Rb ∼ N (µb,Σb), and ϵt is the vector of idiosyncratic noise,

ϵ ∼ N (0,Σϵ), which is assumed to be independent of the factor portfolios.

Following the setup of DeMiguel et al. (2009), we assume that the risk-free rate follows

a normal distribution with an annual mean of 2% and a standard deviation of 2%. We

further assume that there is only one factor (K = 1), whose annual excess return has

a mean of 8% and a standard deviation of 16%. The mispricing term α is set to zero,

and the factor loadings B are evenly distributed between 0.5 and 1.5. The variance-

covariance matrix of the idiosyncratic noise, Σϵ, is assumed to be diagonal, with elements

drawn from a uniform distribution on [0.10, 0.30], resulting in a cross-sectional average

annual idiosyncratic volatility of 20%. We also report results for different volatility levels

to examine their impact on portfolio weights.

We consider scenarios with the number of assets set to N ∈ {100, 500, 1000} and

estimation window lengths T ∈ {505, 1250, 2500}, corresponding to short, medium, and

long data setups, respectively. For each configuration, Monte Carlo sampling is used to

generate daily return data matching the out-of-sample length in the empirical section.
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Table VI. Standard deviation for simulated data

N = 50 N = 100 N = 500

Strategy T = 505 T = 1250 T = 2500 T = 505 T = 1250 T = 2500 T = 505 T = 1250 T = 2500

Noise Level 20%

K’s τ2 8.1157 8.0386 8.0157 6.5545 6.4171 6.3712 3.4955 3.2918 3.1945
True 7.0302 7.0302 7.0302 5.6165 5.6165 5.6165 2.7232 2.7232 2.7232
LW 7.6104 7.2821 7.1539 6.5176 6.0047 5.8010 5.2705 3.6121 3.1337
SampleC 7.3929 7.1947 7.1213 6.2989 5.8620 5.7270 29.9687 3.5149 3.0346

Noise Level 50%

K’s τ2 14.7048 14.5270 14.4541 13.2714 12.9257 12.7864 8.7571 8.0828 7.7909
True 13.3294 13.3294 13.3294 11.7035 11.7035 11.7035 7.0109 7.0109 7.0109
LW 15.4019 14.7944 14.3222 13.7530 13.1116 12.7011 9.7165 8.9103 8.1472
SampleC 14.0484 13.6540 13.5118 13.1537 12.2475 11.9414 87.6054 9.0725 7.8357

Noise Level 80%

K’s τ2 16.2519 16.0396 15.9552 15.7439 15.3083 15.1374 12.6712 11.6559 11.2194
True 14.9434 14.9434 14.9434 13.9758 13.9758 13.9758 10.0217 10.0217 10.0217
LW 19.0862 18.6778 18.2467 17.0460 16.6083 16.2984 12.6521 11.8875 11.4796
SampleC 15.7809 15.3057 15.1426 15.7181 14.6241 14.2653 360.4017 12.9470 11.2015

From the simulation results, we observe that the sample correlation coefficient pro-

duces estimates close to the true diversification outcome only when idiosyncratic volatility

is low and sufficiently long time-series samples are available-roughly ten times the cross-

sectional dimension. However, once idiosyncratic volatility increases relative to factor

variance (as is typically the case in financial markets with a low signal-to-noise ratio),

the performance of the sample correlation coefficient deteriorates significantly. In such

settings, much longer data histories are required to obtain reliable results. When the

available sample is short or the cross-sectional dimension is large, the estimates become

extremely noisy, leading to unstable and highly concentrated portfolio allocations.

By contrast, the directional component of correlation remains remarkably stable across

different sample lengths and cross-sectional dimensions. Although it necessarily discards

part of the correlation structure and thereby introduces specification error, it consis-

tently yields results close to the true benchmark. As illustrated in Figures VII and VIII

(provided in the appendix for space considerations), this stability translates into more

diversified portfolio weights and substantially fewer short positions. Conceptually, this

reflects a trade-off between specification error and sampling error: by ignoring part of

the correlation information, we incur specification error but benefit from more stable
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portfolios that are robust to sample length and dimensionality.

A comparison with the Ledoit-Wolf (LW) shrinkage estimator reveals an interesting

distinction. Shrinkage methods stabilize the covariance estimator but shrink both vari-

ances and correlations, which leads to lower performance relative to the directional com-

ponent. This finding reinforces our central result: the correlation matrix is the primary

source of sampling error and extreme weights, more so than variance estimates. Correla-

tion neglect therefore acts as an implicit shrinkage mechanism. By down-weighting cor-

relations, it regularizes extreme portfolio weights and reduces reliance on short positions,

ultimately producing lower-risk portfolios, consistent with the findings of Jagannathan

and Ma (2003).

Finally, to further illustrate the role of the estimation window size, we provide addi-

tional plots in the appendix showing the portfolio risk of different methods as T increases.

The results reveal that both K’s τ 2 and LW remain relatively stable across different sample

sizes, whereas SampleC performs poorly in small samples and only begins to outperform

K’s τ 2 when the sample size reaches approximately five to ten times the cross-sectional

dimension. This finding confirms that extremely long histories are required for SampleC

to achieve its true performance potential, consistent with insights from previous literature

(DeMiguel et al., 2009).

Taken together, the simulation study offers a deeper understanding of correlation

neglect. It can be interpreted as a form of shrinkage that, while introducing specification

error, enhances portfolio performance by mitigating extreme weights and reducing short

exposures. The exceptional stability of the directional component provides a practical

guideline for practitioners seeking to incorporate correlation information under limited

data availability or in noisy market environments.
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A. Empirical Spectral Distribution

Modern Portfolio Theory (MPT), pioneered by Markowitz, provides a theoretically

elegant framework for constructing optimal portfolios based on estimated means, vari-

ances, and correlations of asset returns. However, its application in practice has been

limited by a fundamental challenge: estimating the correlation matrix accurately in high-

dimensional, data-poor environments.

As our previous simulation results demonstrate, obtaining reliable correlation esti-

mates typically requires the sample size T to be at least five to ten times larger than

the number of assets N . In real-world applications, where the cross-sectional dimension

is large and time-series data are limited, such conditions rarely hold. Consequently, the

sample correlation matrix often suffers from severe estimation noise, leading to unstable

portfolio weights and poor out-of-sample performance.

To better understand the effects of data limitations on correlation estimation, re-

searchers have increasingly relied on RandomMatrix Theory (RMT; Marčenko and Pastur

(1967)), which provides powerful insights into the spectral properties of sample covari-

ance and correlation matrices. RMT characterizes the limiting spectral distribution of

eigenvalues under the null hypothesis of independent and identically distributed (i.i.d.)

returns. This theoretical benchmark allows us to distinguish between eigenvalue compo-

nents dominated by signal and those dominated by noise, thereby guiding the development

of methods for regularizing or denoising empirical correlation matrices.

Building on these insights, a rich body of literature has emerged to improve corre-

lation estimation in high-dimensional settings. Techniques such as eigenvalue cleaning,

shrinkage, and factor-based approaches have been proposed and extensively studied. For

comprehensive reviews, see Bun et al. (2016) and Bouchaud and Potters (2009). In par-

ticular, many shrinkage estimators, including the widely used Ledoit-Wolf methods, are

grounded in RMT principles and provide theoretically justified improvements over the

naive sample estimator (Ledoit and Wolf (2020)).
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In this section, we investigate how our proposed method affects the spectral distribu-

tion of eigenvalues of the correlation matrix. By comparing our approach with standard

shrinkage and eigenvalue-cleaning techniques, we highlight its effectiveness in reducing

estimation noise while preserving essential dependency structures among assets. This

analysis provides a deeper understanding of the mechanism through which our method

improves portfolio diversification and risk management in high-dimensional environments.

A.1. The Marčenko–Pastur Law and Eigenvalue Distributions

The resulting cross-sectional distribution of the sample eigenvalues is known as the

Marčenko–Pastur (MP) law (Marčenko and Pastur, 1967), which provides a theoretical

benchmark for understanding the behavior of sample eigenvalues in high-dimensional

settings. Consider a data matrix X ∈ RT×N , where returns are i.i.d. with zero mean and

variance 1. Define the sample correlation matrix as:

S =
1

T
X⊤X.

When both N and T grow to infinity with their ratio converging to γ = N/T , the

empirical spectral distribution of S converges almost surely to the MP distribution with

density:

fMP(λ) =


√
(λ+ − λ)(λ− λ−)

2πγλ
, λ ∈ [λ−, λ+],

0, otherwise,

where the lower and upper bounds of the support are:

λ± = (1±√
γ)2 .

The MP law therefore characterizes the eigenvalue spectrum of the sample correlation

matrix under the null hypothesis of no correlation. When γ is large (i.e., T is small
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relative to N), the eigenvalues become highly dispersed, and many accumulate near zero,

leading to numerical instability in matrix inversion. Conversely, when γ → 0 (data-rich

environments), the eigenvalues concentrate tightly around 1, recovering the population

correlation structure.

This result provides the theoretical foundation for modern techniques in correlation

estimation and eigenvalue cleaning. In our context, we leverage the MP framework to un-

derstand how focusing on the directional component of correlations affects the eigenvalue

distribution and, consequently, the stability of portfolio weights.

PROPOSITION 2 (Marčenko–Pastur Law for the Directional Component of Pearson

Correlation): Let X ∈ RT×N be a data matrix with i.i.d. entries of zero mean and variance

1, and assume X follows an elliptical distribution. Define the sample Pearson correlation

matrix ρ̂ij and construct the directional correlation matrix D as:

Dij =
2

π
arcsin(ρ̂ij).

Then, as N, T → ∞ with N/T → γ > 0, the empirical spectral distribution of D converges

in probability to:

2

3
Yγ +

1

3
,

where Yγ follows the standard Marčenko–Pastur distribution with parameter γ as defined

above.

Proof. As T → ∞, we have ρ̂ij → ρij. From Proposition 1, under the elliptical distribu-

tion assumption, we have the relationship between Kendall’s τ and Pearson’s ρ:

τij =
2

π
arcsin(ρij).

Since 2
π
arcsin(1) = 1, the diagonal elements ofD equal one, and the off-diagonal elements

correspond to the Kendall’s τ correlation matrix. By Bandeira et al. (2017), the empirical
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spectral distribution of the Kendall’s τ matrix converges to:

2

3
Yγ +

1

3
,

where Yγ follows the standard Marčenko–Pastur distribution for the Pearson correlation

matrix X.

Panel A. N= 1000, T = 1050, γ = 1.050 Panel B. N= 1000, T = 2000, γ = 0.5

Panel C. N= 1000, T = 5000, γ = 5.8 Panel D. N= 1000, T = 5000, γ = 50

Figure 2. Comparison of empirical eigenvalue distributions and theoretical MP densities
under different values of q. The black solid line is the original MP density, and the red
dashed line is the affine-transformed MP density.

From Fig. 6, we observe that in data-poor settings (small T relative to N), the eigen-

values of the sample correlation matrix are highly concentrated near zero. Since portfolio

weights are proportional to the inverse of the covariance (or correlation) matrix, this
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concentration induces extremely unstable and extreme weights.

However, when we focus only on the directional component of the correlation—

obtained via the arcsin transformation of Kendall’s τ—the eigenvalue distribution be-

comes significantly shrunk toward 1. This stabilization of the spectrum leads to much

more stable portfolio weights, even when data are limited.

Our simulation further illustrates this mechanism by fixing N = 100 and increasing T .

When T is extremely large, the eigenvalues of the Pearson correlation matrix naturally

become well distributed around 1, and the directional component yields a spectrum even

closer to 1. This explains the earlier finding: in data-rich environments, Kendall’s τ

may introduce a small model misspecification error relative to Pearson correlation, but

its impact on portfolio performance is negligible because the estimation error disappears

when sufficient data are available.

In all other cases, however, focusing only on the directional component offers a prac-

tical and robust solution. This section identifies the channel through which extreme

portfolio weights arise—namely, the distortion of the eigenvalue distribution in high-

dimensional, data-poor setups. From this perspective, shrinking correlations is effectively

equivalent to shrinking the eigenvalue distribution, which aligns with other eigenvalue-

cleaning techniques in the literature. Therefore, applying the arcsin transformation to

isolate the directional component of correlation provides a theoretically justified and nu-

merically stable approach to covariance estimation, avoiding the need for extremely long

time-series data.
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V. Conclusion

The financial literature presents conflicting views on the role of correlation in portfolio

choice. On one hand, behavioral research identifies “correlation neglect” as a cognitive

bias, suggesting that investors should be encouraged to incorporate correlation infor-

mation into their decisions. On the other hand, a large body of empirical evidence

demonstrates that portfolios constructed using sample correlation estimates often per-

form poorly out of sample, implying that ignoring these correlations-as simple heuristics

do-can be a rational response to estimation error.

This paper reconciles this tension by showing that the sample correlation coefficient is

not a monolithic signal. We decompose correlation into two components: its magnitude

(the strength of comovement) and its direction (the sign of comovement). Our central

finding is that the directional component is remarkably stable and robust, even in high-

dimensional settings with limited data. In contrast, the magnitude is the primary source

of estimation error, which destabilizes portfolio weights and deteriorates out-of-sample

performance.

We systematically analyze how correlation neglect influences portfolio diversification.

Using simulation studies, we demonstrate that ignoring the magnitude of correlations

introduces some specification error but substantially reduces the variance caused by sam-

pling noise, thereby improving robustness. A spectral analysis of the correlation matrix

further reveals the mechanism: by effectively shrinking extreme eigenvalues, correlation

neglect stabilizes the matrix inversion required for portfolio optimization, which in turn

reduces extreme portfolio weights. Our empirical analysis confirms that this mechanism

also operates in real financial data, where our proposed method consistently delivers

improved diversification and risk-adjusted performance.

The implications of our findings are threefold. First, for financial econometrics, our

approach offers a new and intuitive form of elementwise shrinkage on the correlation ma-

trix, providing a theoretical foundation for discarding noisy components while retaining
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stable, valuable information. Second, for behavioral finance, our work refines the debate

on correlation neglect: investors’ skepticism toward sample correlation estimates may not

reflect a cognitive bias but rather a rational response to excessive noise. The prescriptive

takeaway is not to indiscriminately “use correlation” but instead to focus on its stable

directional component. Third, for practitioners, our proposed method is simple to imple-

ment and provides a practical pathway to harness the benefits of diversification without

being misled by unstable correlation estimates.

In conclusion, the question is not whether to use correlation, but how. By disentan-

gling the stable signal from the volatile noise within the correlation matrix, this paper

provides both a theoretically grounded and practically effective framework for building

more robust, well-diversified, and stable portfolios.
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VI. Appendix

Appendix A. More Stuff

Table VII. Herfindahl Index for simulated data

N = 50 N = 100 N = 500

Strategy T = 505 T = 1250 T = 2500 T = 505 T = 1250 T = 2500 T = 505 T = 1250 T = 2500

Noise Level 20%

K’s τ2 0.1471 0.1462 0.1465 0.0741 0.0735 0.0736 0.0252 0.0236 0.0228
True 1.7570 1.7570 1.7570 1.5329 1.5329 1.5329 1.1679 1.1679 1.1679
LW 0.4491 0.7850 1.0945 0.2068 0.3682 0.6159 0.0902 0.0600 0.0854
SampleC 1.7259 1.7127 1.7187 1.5932 1.5524 1.5517 7.4667 1.2617 1.2432

Noise Level 50%

K’s τ2 0.1172 0.1013 0.0979 0.2633 0.2415 0.2343 0.8094 0.7581 0.7285
True 1.0913 1.0913 1.0913 1.1000 1.1000 1.1000 1.0496 1.0496 1.0496
LW 0.0542 0.0876 0.1640 0.0429 0.0508 0.0750 0.0303 0.0283 0.0250
SampleC 1.1266 1.1081 1.1027 1.1635 1.1361 1.1383 6.1870 1.1003 1.0978

Noise Level 80%

K’s τ2 0.3377 0.3392 0.3403 0.1694 0.1742 0.1765 0.0217 0.0226 0.0233
True 1.0234 1.0234 1.0234 1.0306 1.0306 1.0306 1.0249 1.0249 1.0249
LW 0.0238 0.0275 0.0364 0.0144 0.0169 0.0196 0.0086 0.0118 0.0127
SampleC 1.0601 1.0469 1.0419 1.0873 1.0686 1.0719 4.9758 1.0507 1.0600
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Table VIII. Average Short Position Size for simulated data

N = 50 N = 100 N = 500

Strategy T = 505 T = 1250 T = 2500 T = 505 T = 1250 T = 2500 T = 505 T = 1250 T = 2500

Noise Level 20%

K’s τ2 0.5814 0.5761 0.5730 0.7484 0.7355 0.7274 1.1115 1.0488 1.0184
True 1.2696 1.2696 1.2696 1.3761 1.3761 1.3761 1.5144 1.5144 1.5144
LW 0.9578 1.0622 1.1389 1.0510 1.0902 1.1623 2.0853 1.3986 1.2504
SampleC 1.3111 1.2867 1.2788 1.4874 1.4140 1.3928 14.2269 1.8698 1.6586

Noise Level 50%

K’s τ2 0.1850 0.1832 0.1822 0.1246 0.1226 0.1216 0.0463 0.0449 0.0440
True 0.4906 0.4906 0.4906 0.7184 0.7184 0.7184 1.2369 1.2369 1.2369
LW 0.1375 0.1657 0.2085 0.3337 0.3514 0.3763 1.0713 1.0221 0.9192
SampleC 0.5479 0.5172 0.5112 0.8576 0.7761 0.7551 13.6635 1.5936 1.3839

Noise Level 80%

K’s τ2 0.0372 0.0238 0.0212 0.1034 0.0789 0.0691 0.5400 0.4800 0.4466
True 0.2277 0.2277 0.2277 0.3844 0.3844 0.3844 0.9486 0.9486 0.9486
LW 0.0004 0.0014 0.0029 0.0161 0.0371 0.0496 0.3414 0.4911 0.5341
SampleC 0.2849 0.2507 0.2456 0.5193 0.4397 0.4210 12.1656 1.2949 1.0917
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Figure 3. Comparison of portfolio standard deviation for simulated data as the estima-
tion window size increases.
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Figure 4. Comparison of portfolio standard deviation for simulated data as the estima-
tion window size increases.
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Figure 5. Comparison of portfolio standard deviation for simulated data as the estima-
tion window size increases.
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Figure 6. Comparison of portfolio standard deviation for simulated data as the estima-
tion window size increases.
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